11 research outputs found

    Real-time sound synthesis on a multi-processor platform

    Get PDF
    Real-time sound synthesis means that the calculation and output of each sound sample for a channel of audio information must be completed within a sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the maximum period available is 31.25 μsec. Such requirements demand a large amount of data processing power. An effective solution for this problem is a multi-processor platform; a parallel and distributed processing system. The suitability of the MIDI [Music Instrument Digital Interface] standard, published in 1983, as a controller for real-time applications is examined. Many musicians have expressed doubts on the decade old standard's ability for real-time performance. These have been investigated by measuring timing in various musical gestures, and by comparing these with the subjective characteristics of human perception. An implementation and its optimisation of real-time additive synthesis programs on a multi-transputer network are described. A prototype 81-polyphonic-note- organ configuration was implemented. By devising and deploying monitoring processes, the network's performance was measured and enhanced, leading to an efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely necessary in most performances, a scheduling program for dynamic note allocation was then introduced to achieve further efficiency gains. Considering calculation redundancies still further, a multi-sampling rate approach was applied as a further step to achieve an optimal performance. The theories underlining sound granulation, as a means of constructing complex sounds from grains, and the real-time implementation of this technique are outlined. The idea of sound granulation is quite similar to the quantum-wave theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing requirements set tough demands, providing a challenge for this audio synthesis engine. Three issues arising from the results of the implementations above are discussed; the efficiency of the applications implemented, provisions for new processors and an optimal network architecture for sound synthesis

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    Reviews

    No full text

    Durham Music Technology: Activity Report

    No full text
    Durham Music Technology is an ongoing collaboration between the Concurrent Digital Signal Processing group in the School of Engineering and the Electroacoustic Music Studio in the Department of Music at Durham University. In this activity report, we present current research interests in multi-processor architectures for real-time synthesis, VLSI implementation of synthesis algorithms, sound analysis-resynthesis, and works in the electroacoustic studio
    corecore